工商银行 (一)工商银行大数据建设情况 图表 1:工商银行大数据云服务平台 工行的信息库建设主要指非结构的数据。目前,工行实现了包括17125个境内机构,39个国家(地区)的383个境外机构,工银瑞信、工银安盛、工银金融、工银租赁、工银国际等综合化子公司组成的集团内境内外机构信息系统的统一和集中管理,建立了全行统一的数据仓库和集团信息库两个大数据基础平台,数据总量超过4500T。 图表 2:工行数据仓库和集团信息库架构 因为非结构化的数据的量是非常大的,所以工行的原则是信息库建设没有把非结构化建设进行物理存储的集中,工行只是通过统一的搜索引擎让用户能够快速地搜索找到需要的非结构化信息。 1、客户评价 工行在柜面、自助终端以及网上银行等各服务渠道,实现对客户的识别、信息共享、联动营销和产品推介;根据客户的资产、负债、中间业务基本信息、交易信息,实现对公、个人客户的统一星级评价,差异化服务。 图表 3工行客户星级评价模型 2、精准营销 图表 4:工行大数据营销模型 3、风险防范 利用大数据使得工行风险防范手段更加丰富。工行通过大数据在事前、事中、事后三个环节的运用进行风险的柔性控制。 一是进一步强化事前的分析论证,突出防患于未然。在信贷准入方面,整合工行CIIS信息、人民银行征信管理信息、银监会风险信息等资源,建立客户准入风险分析模型,对特定高风险客户群进行分析,通过关联信息查询对企业所在客户群的信用总体情况进行分析,及时发现潜在风险点,从而为客户上下游企业对客户经营及信用可能产生的影响做出判断; 二是加强事中监督和风险预警,及时发现潜在风险。通过数据分析,及时发现客户交叉违约现象,开展风险预警分析,如客户贷款在工行正常却在他行存在不良、客户在工行不同专业的贷款中一项正常另一项不良; 三是加强资金运行的跟踪力度,监督不良客户的资金运动,对不良资产进行追欠行动; 四是突出惩戒机制,将不良信息报送有关征信数据库,增加不良客户的违约成本,从而降低其违约的概率。 图表 5:工商银行人工智能学习平台 招商银行 1、系统业务简介 数据驱动的互联网智能获客由用户从线上发起,招商银行实时进行名单收集及数据承接,随后进入“网上申请,上门服务”或“网上申请,网点核身”的业务流程,通过“线上申请+双线下”的体系化服务模式,帮助用户办理信用卡,在线获取信用卡价值客户。 目前,系统每天实时向各地下发新户申请名单,巨大的数据流量支撑了招商银行全国39个信用卡部门、数千名的信用卡直销队伍及全国所有的招商银行营业网点,使招商银行成为全国率先实现规模化、集约化、成体系运作的商业银行。 2、系统建设的目标 图表 6:智能系统建设目标 3、系统应用框架示意图 图表 7:智能获客系统应用框架 (1)业务处理系统:包括接口服务系统(允许合作厂商直接提交用户名单到招商银行系统)、流程管理系统(新旧户流程管理、双线下流程管理等)、决策引擎系统(判断用户的价值所在,比如是否为零售的价值客户)、大数据征信系统。 (2)业务支持系统:包括运营管理系统、智慧营销管理系统和用户行为分析系统。 (3)数据承接系统:包括数据承接(统一承接各个平台的流量数据)、数据检核、数据筛选。 (4)数据驱动系统:包括名单分配系统(将收集到的数据分配到各信用卡部及网点)、业务代表移动服务系统(PAD系统)。 4、数据驱动模型 数据驱动模型以用户数据为核心,形成以数据收集、数据承接、数据驱动、数据经营、数据分析的闭环,从而在不同的阶段以不同的方式和目的,对用户数据的价值进行充分挖掘。 图表 8:数据驱动模型 (1)数据收集:从招商银行主站、手机银行、个人银行专业版、搜索引擎、合作方收集用户数据。 (2)数据承接:有效的用户数据加工后统一收集及整理。 (3)数据驱动:用户数据被分配给各信用卡部的直销人员或网点。 (4)数据经营:通过直销人员上门服务或网点办理,将数据转化为客户,即流量变现。 (5)数据分析:分析用户数据,优化流程及用户体验,更好地收集用户数据。 1、智能决策引擎分流机制 实现对流量及产能的动态管理。系统采用了创新的智能决策引擎分流机制,建立了线上名单数据与双线下业务流程的完美对接,激活网点资源,优化资源配置,实现对名单流量及产能的动态管理,防止成熟市场因无法及时响应用户需求而导致名单溢出以及无信用卡部门城市的新增网点流量浪费的现象出现。 图表 9:决策引擎分流机制 2、大数据征信辅助 传统的征信体系是银行业健康发展的基石,在互联网时代,要将风险控制及快速授信做到极致,需要借助于大数据,联合外部优质大数据厂商,组成策略联盟,洞察用户站外行为,完善和丰富用户画像,达到利用外部数据解决内部风险控制的目的。 3、借助大数据的用户行为分析 通过数据采集和监测,根据不同的业务场景进行建模,分析用户站内行为,最终实现可视化的呈现。通过大数据分析,银行可以全面了解用户在使用自身服务过程中的行为特点,从各种层面提供决策支持,实现运营内容优化,提升长尾资源和碎片资源的使用能力,这是银行业在大数据应用方面的有益探索。 4、流量经营为中心的业务模式 流量经营以智能管道和聚合平台为基础,以扩大流量规模、释放流量价值为方向,其最终目的是顺应移动互联网的发展,壮大基础用户规模,占领市场的至高点。通过建立以流量经营为中心的业务模式,基本解除了对人力驱动模式的依赖,极大降低了营销成本,为实现低成本获客提供基础保障。 5、数据驱动为核心的业务模型 在传统的人力驱动模型之下,银行通过差异化的产品、高强度的资源投放,基本可以保障其在商业竞争中占据有利位置,而在移动互联时代,传统的人力驱动成本不断增长,但收益日渐下滑,难以为继。数据驱动的业务模型是信息技术对银行业界的一大改变。银行的经营理念需要从现有的人力驱动方式向数据驱动方式转变,这种转变实际上也是全球产业面临的一场新变革。 图表 10:人力驱动及数据驱动模型对比 通过数据驱动模型,银行线上获取客户的边际成本接近于零,目标客群扩大至所有的互联网用户,直销人员在上门服务时更有目的性,成效显著提高。 6、独创的线下双通道充分挖掘客户的价值 采用决策引擎分流机制,普通用户流向“网上申请,上门服务”的直销模式,而对于零售的价值客户则导向“网上申请,网点核身”的业务模式,在办理信用卡业务的同时,引导客户同时办理招商银行一卡通,通过双线下业务流程的设计,使客户价值得到充分的挖掘,资源得到充分的利用。 7、落实两卡交叉销售打造大零售体系的全行战略 通过流程设计,招商银行创造了信用卡与零售产品交叉销售的自然场景,打通了信用卡部门与全行零售部门交叉销售的关键环节,在获取信用卡客户的同时也为零售部门贡献价值客户,促进打造大零售体系的全行战略,提升客户的综合价值贡献,成功将信用卡获客平台打造成聚合零售客户的流量入口。 1、利润增涨显著 爆发式增长的基础客群推动了招商银行信用卡部门利润翻番的目标。2013—2016年,通过该平台直接获取信用卡新户近千万个,2016年的新户获取量更是达到2013年和2015年的总和,实现了跨越式、爆发式增长,其零售获客能力预计还将进一步提升。 2、领导获客渠道 智能获客系统已成为信用卡获客业务中决定性的领导力量。2013—2016年,通过该平台直接获取的信用卡新户在当年全渠道获取新户总量中的占比分别达到29.3%、33.7%、37.3%和45.1%,目前这一比例还在不断提高。 民生银行 民生银行通过大数据驱动业务运营及产品创新,搭建低成本、高性能、高可靠且水平扩张的数据平台,通过大数据分析应对金融业的大数据挑战,完善及大力发展银行中间业务,避免产品品种雷同、老旧等情况的出现,初步做到个性化的精准营销。 1、建立数据源 民生银行数据源包括个人特征数据、资产数据和其他数据。其中,个人特征数据包含年龄、性别、职业、收入、工作区域、社会关系等;资产数据包括个人定期存款、活期存款、信用贷款、抵押贷款等;其他数据涵盖个人互联网行为数据、个人位置信息数据、商户数据等。 2、打造不同层面的数据场景 民生银行通过整合客户数据,进行精准营销的设计,降低客户流失率,提高忠诚度;借助大数据技术对不同渠道来源的提供商、客户的交易行为进行全面分析,实现链式反应;搭建有效的数据模型,为客户提供全方位管家式的非金融服务;借助对业务的分析与优化,推动自身的转型与创新。 图表 11:民生银行不同层面的数据场景 一方面,通过大数据相关技术,可以及时了解本行业及关联行业的变化,快速调整自身企业的运营方向及策略,缩小企业运营风险敞口;另一方面,通过整合金融业内部和外部数据,建立起多维度多层次的分析洞察报表,提供市场、销售、用户、舆情等多角度的宏观洞察,辅助战略决策,同时也为企业的运营、产品、市场、销售、服务等一线业务人员提供数据洞察,支持其日常的业务行动。 结合国内外先进企业的大数据经验,民生银行充分挖掘大数据价值,以“智能化、云端化、标准化、移动化”建设为主线,努力打造和提升大数据能力,积极推进全行的大数据战略。对于民生银行来说,“四化”建设纵贯数据获取与存储、数据整合、数据挖掘、数据应用整个大数据价值链,是一个影响深远的系统性工程。 1、大数据智能化 2、大数据云端化 3、大数据标准化 4、大数据移动化 为顺应移动互联网时代潮流,民生银行提出移动数据产品发布平台和数据产品研发同时推进战略。通过数据产品在移动端的部署,使数据用户在任何时间(Anytime)、任何地点(Anywhere)接收与业务相关的任何数据结果(Anything),大幅提升决策效率和前端人员的快速反应能力。在大数据移动化方面,民生银行主要推出四款移动数据产品:蒲公英、啄木鸟、猫头鹰和鸿雁。 “蒲公英”是一款专为民生银行公司业务客户经理拓展客户和营销产品提供支持的移动产品,旨在帮助客户经理提升工作效率与营销成功率。啄木鸟系统通过自动识别可疑交易降低小微业务的操作风险。“猫头鹰”为民生银行支行管理者提供即时获取支行经营状况的移动产品。“鸿雁”是民生银行高层管理层智能化决策提供支持的大数据产品。四款移动数据产品为民生银行战略决策、客户拓展、产品营销、风险识别、业务管理提供数据支持。 对公客户是商业银行的主要利润来源之一,且该类客户沉淀大量复杂的数据,将大数据技术应用于对公客户服务和对公产品营销具有重要意义。针对移动互联网的大数据营销体系“PDMA”,主要包括认知客户(perceive)、挖掘需求(data-mining)、精准营销(marketing)、营销评估(assessment),构成一个闭环体系,基于“PDMA”的框架能很好地建立银行产品和客户两个维度。 1、P——认知客户行为 2、D——挖掘客户需求 3、M——产品精准营销 4、A——营销效果评估 2015年3月,民生银行“金融e管家”平台正式上线,平台主要针对国内商业银行客户关系管理系统管理功能、分析功能、应用功能相互脱离的弊端而开发的基于大数据分析的一站式服务平台。“金融e管家”服务于全行对公客户管理,覆盖“PDMA”框架的四个环节,是对公业务应用大数据技术的典范。 首先,认知客户行为(P)。该平台对接民生银行内200多个生产系统和数据中枢,并导入上市公司数据、人行征信数据、工商数据等行外的数据,形成完善的数据结构,通过不同的规则组合数据,如对公客户和产品的交叉组合,或者基于供应链的客户上下游集合等,使用户可从不同角度解读对公客户的特性,同时通过行内资金流和行内外信息流,精确掌握客户的行为习惯。 其次,挖掘客户需求(D)。该平台对客户信息更深层次的挖掘,去除无效信息,将有效信息放大,结合线下业务资源,挑选出最适合营销的企业关系群体,应用多种大数据分析方法,建立关系网络分析模型,识别出群体的特征和相互之间业务重点,并以极具可用性的界面展示客户潜在需求挖掘的结果,帮助客户经理深度挖掘客户的金融需求。 再者,产品精准营销(M)。该平台是一个智能化的融资理财和资源整合平台,主要围绕核心客户,通过后台数据的支撑,建立交易网络模型和上下游客户推荐模型,并据此匹配最适合的金融产品,实现精准营销。该平台上线后,对公产品关联营销的成功率大大提高。 最后,产品营销评估(A)。该平台建立了基于历史记录的客户绩效评价体系,科学全面的评价客户绩效,并根据评价结果改进营销方向。后评价功能涵盖对公业务的不同情况,如对个性化服务方案的综合评价,对集团客户也能建立综合收益的评价,而不仅仅是单独考虑单笔业务的收益,适应了缺资产时代的商业银行经营新思路。 (来自:银行联合信息网)(二)非结构化数据信息库建设
(三)工商银行大数据分析挖掘与应用
(一)数据驱动的互联网智能获客系统
(二)数据驱动的互联网智能获客系统的创新特点
(三)系统应用效果
(一)民生银行大数据平台建设
(二)民生银行大数据战略方向
(三)基于PDMA框架的大数据对公营销
(四)民生银行“PDMA”应用实践